צאל (אדער נומער) ווערט געניצט צו ציילן און מעסטן פארשידענע אייגנקייטן.

מיט א צאל קען מען רעכענען וויפיל מאסע, צייט, ווייט, הייסקייט און אזוי ווייטער.

צאלן זענען פון די יסודות פון מאטעמאטיק.

סארטן צאלן

ס'איז פאראן עטלעכע סיסטעמען פון צאלן.

נאטירלעכע צאל

  נאטירלעכע צאל

די מערסטע באקאנטע צאל זענען די נאטירלעכע צאל אדער ציילן צאל: איינס, צוויי, דרײַ, ... .

אין דער באזע צען נומערן סיסטעם, וואס מען ניצט הײַנטיקע טעג פאר כמעט אלע אריטמעטישע אפעראציעס, שרײַבט מען די סימבאלן פאר די נאטירלעכע צאל מיט צען ציפערן: 0, 1, 2, 3, 4, 5, 6, 7, 8, און 9. אין דער דאזיגער באזע צען סיסטעם, האט דער רעכטער ציפער פון א נאטירלעכער צאל א פלאץ ווערט פון איינס, און יעדער אנדערער ציפער האט א פלאץ ווערט וואס איז צען מאל אזויפיל ווי דער פלאץ ווערט פונעם ציפער צו זיין רעכט. דער סימבאל פארן סכום פון אלע נאטירלעכע צאל איז N, אויך געשריבן  .

גאנצע צאל

  גאנצע צאל

א גאנצע צאל איז א גאנצער נומער און נישט קיין ברוכצאל. א גאנצע צאל קען זיין א פאזיטיווער נומער (א נאטירלעכער נומער) (1, 2, 3, …) אדער א נעגאטיווער נומער (−1, −2, −3, ...) אינקלודיוו א נול. א גאנצע צאל איז די גרופע {...3, 2, 1, 0, 1‏−, 2‏−, 3‏−...}. (למשל א 1/2 צו א 1/3 זיינען נישט קיין 'גאנצע צאלן')

געוויינטלעך באצייכנט מען דעם סכום פון גאנצע צאלן מיטן אות  .

ראציאנאלע צאל

  ראציאנאלע צאל

א ראַציאנאַלע צאָל איז א רעאלע צאל וואס מ'קען רעפרענזענטירן ווי די פארהעלטעניש (לאטיין ratio ראַציא) פון צוויי גאנצע צאלן. דער סכום פון אלע ראציאנאלע צאלן ווערט באצייכנט  . מען שרייבט א ראציאנאלע צאל ווי א ברוכטייל (טיילציפער) פון צוויי צאלן, דער "ציילער" און דער "טיילער".

דער סכום   מיט די אפעראציעס פון צוגאב און טאפלונג (פון רעאלע צאלן) שאפט א פעלד, דאס פעלד פון ראציאנאלע צאלן.

אומראציאנעלע צאל

 
2√ איז אומראציאנעל.

אן אומראציאנעלע צאל איז א רעאלע צאל וואס איז נישט קיין ראציאנאלע צאל. דער קוואדראט ווארצל פון 2 איז אן אומראציאנעלע צאל. מען קען דערווייזן אז קוואדראט ווארצל פון יעדער נאטירלעכער צאל איז אדער א נאטירלעכע צאל אדער אן אומראציאנעלע צאל.

אימאגינערע צאל

דער סימבאל i ווערט געניצט פארן קוואדראט ווארצל פון 1- . אן אימאגינערע צאל איז פארמירט פון א רעאלע צאל געטאפלט מיט i.

מאטעמאטיקער האבן אויסגעטראכט דעם נומער i ווייל ס'עקזיסטירט נישט קיין רעאלע צאל וואס מען קען קוואדראטירן צו מאכן 1-. מען קען האנדלען אימאגינערע צאל גענוי ווי רעאלע.

למשל:

  • 2i + 3i = (2 + 3)i = 5i
  • 5i - 3i = (5 - 3)i = 2i
  • ווען מען טאפלט צוויי אימאגינערע צאל, דארף מען געדענקען אז i × i (i2) איז -1. דעריבער
.5i × 3i = ( 5 × 3 ) × ( i × i ) = 15 × (-1) = -15

ווען מען האט צוערשט אנגעהויבן רעדן וועגן דעם קוואדראט ווארצל פון 1- האבן טייל מאטעמאטיקער נישט געהאלטן דערפון, דעריבער האט רענע דעקארט גערופן זיי "אימאגינער", ד.ה. "אויסגעטראכט". היינט ווערן די צאל געניצט, אבער דער נאמען איז געבליבן. די ערשטע צו ניצן אימאגינער צאל זענען געווען לעאנהארד אוילער און קארל פרידריך גאוס אינעם 18טן י"ה.

נעמען פון צאלן

די ערשטע צען צאָלן האבן באזונדערע נעמען. אזוי ווי מען איז געוואוינט צו א צענדליגע סיסטעם פון ציילן, זענען די אנדערע נעמען געבויט אויף די נעמען און די טאפלונגען פון צען (הונדערט, טויזנט).


צאל יידיש
1 איינס
2 צוויי
3 דרײַ
4 פיר
5 פינף
6 זעקס
7 זיבן
8 אכט
9 נײַן
10 צען
11 עלף
12 צוועלף
13 דרייצן
14 פערצן
15 פופצן
16 זעכצן
17 זיבעצן
18 אכצן
19 ניינצן
20 צוואנציק
21 איין און צוואנציק
22 צוויי און צוואנציק
23 דרײַ און צוואנציק
30 דרייסיק
40 פערציק
50 פופציק
60 זעכציק
70 זיבעציק
80 אכציק
90 ניינציק
100 הונדערט
200 צוויי הונדערט
300 דריי הונדערט
1000 טויזנט
2000 צוויי טויזנט
1,000,000 מיליאן

ס'איז נאך געבליבן אלטע נעמען פון אנדערע צאלן ווי טוץ (12), שאק (60) און גראס (144).

זעט אויך

מוסטער:מאטעמאטיק-שטומף