בדוקי עריכות אוטומטית, אינטערפעיס רעדאקטארן, אינטערפעיס אדמיניסטראַטאָרן, סיסאפן, מייבאים, מעדכנים, מייבא, אספקלריה רעדאקטארן
46,367
רעדאגירונגען
ק (החלפת טקסט – "אַp" ב־"אַפ") |
ק (החלפת טקסט – "ײַ" ב־"יי") |
||
| שורה 1: | שורה 1: | ||
''' | '''באַשרייבנדיקע סטאַטיסטיק''' איז אַ צװייג אין [[סטאַטיסטיק]] װעלכע באַשעפטיקט זיך מיט שאַפן און פאַרגלייכן [[מאָס]]ן. דער ציל איז צו באַשרייבן דאַטן אױף אַ קורצן און לייכטן אױpן, למשל אין [[טאַבעלע]]ס, [[גראַף|גראַפן]] אָדער מאָסן. | ||
עס איז דאָ פאַרשײדענע װעגן װי אַזױ צו רעכנען מאָסן. די צענטראַלע־טענדענצן וועלכע מעסטן די מיטל־ווערט פון די נומערן, װי דער [[דורכשניט]], װעלכער איז כּולל דער [[אריטמעטישער דורכשניט]], [[מעדיאן]], [[מאדע (סטאטיסטיק)|מאדע]], [[געאמעטרישער דורכשניט]] און [[הארמאנישער דורכשניט]]. אױך איז פאַראַן מאָסן װעלכע מעסטן די צעשפּרײטע־טענדענצן פון די נומערן, װי די | עס איז דאָ פאַרשײדענע װעגן װי אַזױ צו רעכנען מאָסן. די צענטראַלע־טענדענצן וועלכע מעסטן די מיטל־ווערט פון די נומערן, װי דער [[דורכשניט]], װעלכער איז כּולל דער [[אריטמעטישער דורכשניט]], [[מעדיאן]], [[מאדע (סטאטיסטיק)|מאדע]], [[געאמעטרישער דורכשניט]] און [[הארמאנישער דורכשניט]]. אױך איז פאַראַן מאָסן װעלכע מעסטן די צעשפּרײטע־טענדענצן פון די נומערן, װי די װייטקייט, די צװישן־קװאַרטאַל־װייטקייט, די פאַרשײדנקייט און דער סטאַנדאַרט־אָפּװייכונג. | ||
== צענטראַלע־טענדענצן == | == צענטראַלע־טענדענצן == | ||
=== אַריטמעטישער דורכשניט === | === אַריטמעטישער דורכשניט === | ||
דער אַריטמעטישער [[דורכשניט]] איז דער מערסטער פאַרשפּרײטער דורכשניט, אָpט מאָל רופט מען אים בלױז "דער דורכשניט". | דער אַריטמעטישער [[דורכשניט]] איז דער מערסטער פאַרשפּרײטער דורכשניט, אָpט מאָל רופט מען אים בלױז "דער דורכשניט". זיין [[פאָרמולע]] איז װי פאָלגנדיק: | ||
<div style="text-align: center;"> | <div style="text-align: center;"> | ||
<math> \bar{x} = {1 \over n} \sum_{i=1}^n{x_i} = \frac{x_1 + x_2 + \dotsb + x_n}{n} </math> | <math> \bar{x} = {1 \over n} \sum_{i=1}^n{x_i} = \frac{x_1 + x_2 + \dotsb + x_n}{n} </math> | ||
| שורה 20: | שורה 20: | ||
== צעשפּרײטע־טענדענצן == | == צעשפּרײטע־טענדענצן == | ||
=== | ===װייטקייט=== | ||
װייטקייט איז די װייטקייט צװישן דער קלענסטער װאַריאַבל און דער גרעסטער װאַריאַבל (<math> R = x_{max} - x_{min} </math>). | |||
=== | === צװישן־קװאַרטאַל־װייטקייט === | ||
די | די צװישן־קװאַרטאַל־װייטקייט (װערט באַצײכנט װי IQR) איז די װייטקייט פון אַ פערטל פון דער כּלל־װייטקייט (Q1) און דריי־פערטל פון דער כּלל־װייטקײט (Q3). ד"ה 50% אין דער מיט. מען נוצט די מאָס כּדי צו רעכנען אַ מוסטער אָן באַרעכנען עקסטרעמע מאָסן פון די זייטן. די פאָרמולע איז: IQR = Q3 − Q1. | ||
=== | === פאַרשײדנקייט === | ||
פאַרשײדנקייט מעסט די װייטקייט צװישן יעדן װאַריאַבל און דער דורכשניט, אױף דער צװײטער [[מדריגה (מאטעמאטיק)|מדריגה]]. כּדי צו רעכנען די פאַרשײדנקייט נוצט מען די פאָרמולע: | |||
:<math>\sigma^2 = \frac {\sum_{i=1}^N \left(x_i - \overline{x} \right)^2} {N}</math> | :<math>\sigma^2 = \frac {\sum_{i=1}^N \left(x_i - \overline{x} \right)^2} {N}</math> | ||
[[טעקע:Standard deviation diagram.svg|left|thumb|250px| | [[טעקע:Standard deviation diagram.svg|left|thumb|250px|סטאַנדאַרט־אָפּװייכונג געמעל פון אַ [[נאָרמאַלע פאַרטײלונג]]]] | ||
=== | === סטאַנדאַרט־אָפּװייכונג === | ||
די | די סטאַנדאַרט־אָפּװייכונג איז דער [[קוואדראט ווארצל|װאָרצל]] פון דעם פאַרשײדנקייט, און באַװייזט דעם פאַרשײדנקייט צװישן די װאַריאַבלען און דער דורכשניט אין צאָלן פונעם מוסטער. זיין פאָרמולע איז: | ||
:<math>s=\sqrt {\frac {\sum_{i=1}^N \left(x_i - \overline{x} \right)^2} {N}}</math> | :<math>s=\sqrt {\frac {\sum_{i=1}^N \left(x_i - \overline{x} \right)^2} {N}}</math> | ||
רעדאגירונגען