מייבאים כמותיים, בדוקי עריכות אוטומטית, ביוראקראטן, אינטערפעיס רעדאקטארן, emailconfirmed, אינטערפעיס אדמיניסטראַטאָרן, מנטרים, סיסאפן, צוות טכני, מייבאים, מעדכנים, אספקלריה רעדאקטארן
102,362
רעדאגירונגען
ק (החלפת טקסט – "עטלעכע" ב־"עטליכע") |
ק (החלפת טקסט – "([^ש])לעכט" ב־"$1ליכט") |
||
| שורה 20: | שורה 20: | ||
רעכענען א מער און מער גענויען ווערט פאר <math>\ \pi</math> איז געווארן אן ארויסרוף במשך הונדערטער יאר. | רעכענען א מער און מער גענויען ווערט פאר <math>\ \pi</math> איז געווארן אן ארויסרוף במשך הונדערטער יאר. | ||
[[טעקע:Picalc.png|קליין|דורך ארכימעד'ס אויסשעפונג מעטאד קען מען רעכענען דעם ווערט פון פי ווי גענוי מען וויל, ניצנדיק רעגלמעסיקע [[פילעק]]ן וואס דער קרייז איז אדער זייער [[ארומקרייז]] אדער זייער [[אינקרייז]]. אין דעם בילד זעט מען איין זעקסעק וואס דער קרייז איז זיין ארומקרייז און איין זעקסעק וואס דער קרייז איז זיין אינקרייז.]] מען האט געוואוסט בערכדיקע ווערטן צו פי שוין אין [[בבל]] און אין [[אוראלט עגיפטן]], אבער [[ארכימעד]] האט געוויזן צום ערשטן מאל א מעטאד וואס | [[טעקע:Picalc.png|קליין|דורך ארכימעד'ס אויסשעפונג מעטאד קען מען רעכענען דעם ווערט פון פי ווי גענוי מען וויל, ניצנדיק רעגלמעסיקע [[פילעק]]ן וואס דער קרייז איז אדער זייער [[ארומקרייז]] אדער זייער [[אינקרייז]]. אין דעם בילד זעט מען איין זעקסעק וואס דער קרייז איז זיין ארומקרייז און איין זעקסעק וואס דער קרייז איז זיין אינקרייז.]] מען האט געוואוסט בערכדיקע ווערטן צו פי שוין אין [[בבל]] און אין [[אוראלט עגיפטן]], אבער [[ארכימעד]] האט געוויזן צום ערשטן מאל א מעטאד וואס דערמעגליכט רעכענען <math>\ \pi</math>צו נארוועלכער גענויקייט (דער [[אויסשעפונג מעטאד]]). דער מעטאד איז באזירט אויף דעם וואס דער ארומנעם פון דעם קרייז איז קלענער ווי דער ארומנעם פון דעם [[פילעק]] וואס דער קרייז איז זיין אינקרייז, און גרעסער ווי דער ארומנעם פון דעם פילעק וואס דער קרייז איז זיין ארומקרייז. מיטן רעכענען דעם ארומנעם פון די ביידע פילעקן, וואס דער פילעק קען האבן וואס מער ריפן, קען מען רעכענען דעם ארומנעם פונעם קרייז וואס מער גענוי, און במילא רעכענען <math>\ \pi</math> וואס מער גענוי. ארכימעד האט געניצט זיין מעטאד מיט א [[זעקסעק]], און דערנאך האט ער געטאפלט די צאל ריפן (ניצנדיק כסדר רעגלמעסיקע פילעקן). מיט א פילעק פון 96 ריפן האט ארכימעד געקומען צום ארויסקום {{הערה|א פראגראם וואס מוסטערט ארכימעד'ס מעטאד באשיינט אויפן וועבזייטל [http://www.math.utah.edu/~alfeld/Archimedes/Archimedes.html Archimedes and the Computation of Pi]}} (וואס דערשיינט אינעם בוך [[וועגן מעסטן דעם קרייז]]): | ||
<math>3\frac{10}{71} < \pi < 3\frac{1}{7}</math> | <math>3\frac{10}{71} < \pi < 3\frac{1}{7}</math> | ||
| שורה 40: | שורה 40: | ||
== דאס אננעמען פונעם סימבאל {{פי}} == | == דאס אננעמען פונעם סימבאל {{פי}} == | ||
[[טעקע:Leonhard_Euler.jpg|קליין|[[לעאנהארד אוילער]] האט פאפולאריזירט דעם באניץ פונעם גריכישן אות {{פי}} אין זיינע ווערק וואס ער האט | [[טעקע:Leonhard_Euler.jpg|קליין|[[לעאנהארד אוילער]] האט פאפולאריזירט דעם באניץ פונעם גריכישן אות {{פי}} אין זיינע ווערק וואס ער האט פארעפנטליכט אין 1736 און 1748.]] | ||
אין די פריעסטע באניצונגען איש דער [[גריכישער אות|גריכישער אות {{פי}}]] געווען א פארקירצונג פון דעם גריכיש ווארט פאר [[ארומנעם|פעריפעריע]] (περιφέρεια),<ref>{{Cite book|url=https://books.google.com/books?id=KTgPAAAAQAAJ&pg=PP3|title=Theorematum in libris Archimedis de sphaera et cylindro declarario|last=Oughtred|first=William|date=1652|publisher=Excudebat L. Lichfield, Veneunt apud T. Robinson|isbn=|location=|pages=|language=la|quote=δ.π :: semidiameter. semiperipheria}}</ref> און איז געווארן קאמבינירט אין פראפארציעס מיט [[דעלטע (אות)|δ]] (פאר [[דיאמעטער]]) אדער [[רהא|ρ]] (פאר [[ראדיוס]]) צו שאפן קרייז קאנסטאנטן.<ref name=":0">{{Cite book|url=https://books.google.com/?id=bT5suOONXlgC&lpg=PA9&pg=PA9|title=A History of Mathematical Notations: Vol. II|last=Cajori|first=Florian|date=2007|publisher=Cosimo, Inc.|isbn=978-1-60206-714-1|location=|pages=8–13|language=ענגליש|quote=the ratio of the length of a circle to its diameter was represented in the fractional form by the use of two letters ... J.A. Segner ... in 1767, he represented 3.14159... by δ:π, as did Oughtred more than a century earlier}}</ref><ref name=":1">{{Cite book|url=https://books.google.com/?id=uTytJGnTf1kC&lpg=PA312&pg=PA312|title=History of Mathematics|last=Smith|first=David E.|date=1958|publisher=Courier Corporation|isbn=978-0-486-20430-7|location=|pages=312|language=en}}</ref><ref>{{Cite journal|last=Archibald|first=R.C.|date=1921|title=Historical Notes on the Relation <math>e^{-(\pi/2)} = i^i</math>|jstor=2972388|journal=The American Mathematical Monthly|volume=28|issue=3|pages=116–121|doi=10.2307/2972388|quote=It is noticeable that these letters are ''never'' used separately, that is, {{פי}} is ''not'' used for 'Semiperipheria'|via=}}</ref> (פאר דעם האבן מאטעמאטיקער ווי א מאל געניצט בוכשטאבן ווי ''c'' אדער ''p'' אנשטאט דעם.<ref name="Arndt_a" />) דאס ערשטע מאל וואס איז באריכטעט איז ווען [[William Oughtred|אוטרעד]] האט געניצט "<math>\delta . \pi</math>", ארויסצודרוקן די פראפארציע פון פעריפעריע און דיאמעטער אין די 1647 און שפעטערע אויסגאבעס פון ''Clavis Mathematicae''.<ref name="Arndt_a" /><ref>זעט, צום ביישפיל, {{cite book|url=https://books.google.com/books?id=ddMxgr27tNkC&pg=PA69#v=onepage&q&f=false|title=Clavis Mathematicæ|last=Oughtred|first=William|date=1648|publisher=Thomas Harper|isbn=|location=London|page=69|language=לאטיין|trans-title=דער שליסל צו מאטעמאטיק|df=dmy-all}} (איבערזעצונג אויף ענגליש : {{Cite book|url=https://books.google.com/books?id=S50yAQAAMAAJ&pg=PA99|title=Key of the Mathematics|last=Oughtred|first=William|date=1694|publisher=J. Salusbury|isbn=|location=|pages=|language=ענגליש}})</ref> אזוי אויך האט [[Isaac Barrow|בארא]] געניצט "<math display="inline">\frac \pi \delta</math>" צו רעפרעזענטירן דעם קאנסטאנט 3.14...,<ref>{{Cite book|chapter-url=https://archive.org/stream/mathematicalwor00whewgoog#page/n405/mode/1up|title=The mathematical works of Isaac Barrow ..|last=Barrow|first=Isaac|date=1860|publisher=Cambridge University press|others=הארווארד אוניווערסיטעט|isbn=|editor-last=Whewell|editor-first=William|location=|pages=381|language=לאטיין|chapter=Lecture XXIV}}</ref> און גרעגארי האט געניצט "<math display="inline">\frac \pi \rho</math>" צו רעפרעזענטירן 6.28... .<ref name=":1" /><ref>{{Cite journal|last=Gregorii|first=Davidis|date=1695|title=Davidis Gregorii M.D. Astronomiae Professoris Sauiliani & S.R.S. Catenaria, Ad Reverendum Virum D. Henricum Aldrich S.T.T. Decanum Aedis Christi Oxoniae|jstor=102382|journal=Philosophical Transactions|language=לאטיין|volume=19|pages=637–652}}</ref> | אין די פריעסטע באניצונגען איש דער [[גריכישער אות|גריכישער אות {{פי}}]] געווען א פארקירצונג פון דעם גריכיש ווארט פאר [[ארומנעם|פעריפעריע]] (περιφέρεια),<ref>{{Cite book|url=https://books.google.com/books?id=KTgPAAAAQAAJ&pg=PP3|title=Theorematum in libris Archimedis de sphaera et cylindro declarario|last=Oughtred|first=William|date=1652|publisher=Excudebat L. Lichfield, Veneunt apud T. Robinson|isbn=|location=|pages=|language=la|quote=δ.π :: semidiameter. semiperipheria}}</ref> און איז געווארן קאמבינירט אין פראפארציעס מיט [[דעלטע (אות)|δ]] (פאר [[דיאמעטער]]) אדער [[רהא|ρ]] (פאר [[ראדיוס]]) צו שאפן קרייז קאנסטאנטן.<ref name=":0">{{Cite book|url=https://books.google.com/?id=bT5suOONXlgC&lpg=PA9&pg=PA9|title=A History of Mathematical Notations: Vol. II|last=Cajori|first=Florian|date=2007|publisher=Cosimo, Inc.|isbn=978-1-60206-714-1|location=|pages=8–13|language=ענגליש|quote=the ratio of the length of a circle to its diameter was represented in the fractional form by the use of two letters ... J.A. Segner ... in 1767, he represented 3.14159... by δ:π, as did Oughtred more than a century earlier}}</ref><ref name=":1">{{Cite book|url=https://books.google.com/?id=uTytJGnTf1kC&lpg=PA312&pg=PA312|title=History of Mathematics|last=Smith|first=David E.|date=1958|publisher=Courier Corporation|isbn=978-0-486-20430-7|location=|pages=312|language=en}}</ref><ref>{{Cite journal|last=Archibald|first=R.C.|date=1921|title=Historical Notes on the Relation <math>e^{-(\pi/2)} = i^i</math>|jstor=2972388|journal=The American Mathematical Monthly|volume=28|issue=3|pages=116–121|doi=10.2307/2972388|quote=It is noticeable that these letters are ''never'' used separately, that is, {{פי}} is ''not'' used for 'Semiperipheria'|via=}}</ref> (פאר דעם האבן מאטעמאטיקער ווי א מאל געניצט בוכשטאבן ווי ''c'' אדער ''p'' אנשטאט דעם.<ref name="Arndt_a" />) דאס ערשטע מאל וואס איז באריכטעט איז ווען [[William Oughtred|אוטרעד]] האט געניצט "<math>\delta . \pi</math>", ארויסצודרוקן די פראפארציע פון פעריפעריע און דיאמעטער אין די 1647 און שפעטערע אויסגאבעס פון ''Clavis Mathematicae''.<ref name="Arndt_a" /><ref>זעט, צום ביישפיל, {{cite book|url=https://books.google.com/books?id=ddMxgr27tNkC&pg=PA69#v=onepage&q&f=false|title=Clavis Mathematicæ|last=Oughtred|first=William|date=1648|publisher=Thomas Harper|isbn=|location=London|page=69|language=לאטיין|trans-title=דער שליסל צו מאטעמאטיק|df=dmy-all}} (איבערזעצונג אויף ענגליש : {{Cite book|url=https://books.google.com/books?id=S50yAQAAMAAJ&pg=PA99|title=Key of the Mathematics|last=Oughtred|first=William|date=1694|publisher=J. Salusbury|isbn=|location=|pages=|language=ענגליש}})</ref> אזוי אויך האט [[Isaac Barrow|בארא]] געניצט "<math display="inline">\frac \pi \delta</math>" צו רעפרעזענטירן דעם קאנסטאנט 3.14...,<ref>{{Cite book|chapter-url=https://archive.org/stream/mathematicalwor00whewgoog#page/n405/mode/1up|title=The mathematical works of Isaac Barrow ..|last=Barrow|first=Isaac|date=1860|publisher=Cambridge University press|others=הארווארד אוניווערסיטעט|isbn=|editor-last=Whewell|editor-first=William|location=|pages=381|language=לאטיין|chapter=Lecture XXIV}}</ref> און גרעגארי האט געניצט "<math display="inline">\frac \pi \rho</math>" צו רעפרעזענטירן 6.28... .<ref name=":1" /><ref>{{Cite journal|last=Gregorii|first=Davidis|date=1695|title=Davidis Gregorii M.D. Astronomiae Professoris Sauiliani & S.R.S. Catenaria, Ad Reverendum Virum D. Henricum Aldrich S.T.T. Decanum Aedis Christi Oxoniae|jstor=102382|journal=Philosophical Transactions|language=לאטיין|volume=19|pages=637–652}}</ref> | ||
רעדאגירונגען