אונטערשייד צווישן ווערסיעס פון "רוי:פי"

קיין ענדערונג אין גרייס ,  פֿאַר 2 יאָר
ק
החלפת טקסט – "דזשיימס" ב־"דזשעימס"
ק (טשעקטי און אנדערע רייניגונג, typos fixed: מדוייק ← מדויק)
ק (החלפת טקסט – "דזשיימס" ב־"דזשעימס")
שורה 34: שורה 34:
=== אומענדלעכע סעריעס ===
=== אומענדלעכע סעריעס ===
[[טעקע:GodfreyKneller-IsaacNewton-1689.jpg|טעקסט=א פארמעלער פארטרעט פון א מאן מיט לאנגע האר|קליין|[[אייזיק ניוטאן]] האט געניצט [[אומענדלעכע סעריע|אומענדלעכע סעריעס]]  צו רעכענען {{Math|π}} ביז 15 ציפערן.<ref name="Newton" />]]
[[טעקע:GodfreyKneller-IsaacNewton-1689.jpg|טעקסט=א פארמעלער פארטרעט פון א מאן מיט לאנגע האר|קליין|[[אייזיק ניוטאן]] האט געניצט [[אומענדלעכע סעריע|אומענדלעכע סעריעס]]  צו רעכענען {{Math|π}} ביז 15 ציפערן.<ref name="Newton" />]]
די רעכענונג פון {{Math|π}} איז געווארן רעוואלוציאנירט דורך דער אנטוויקלונג פון [[אומענדלעכע סעריע]] טעכניקן אין די 16טע און 17טע יארהונדערטער. און אומענדלעכע סעריע איז דער צוגאב פון די עלעמענטן פון אן אומענדלעכן [[סעקווענץ]].<ref name="Ais">{{harvnb|Arndt|Haenel|2006|pp=185–191}}</ref> אומענדעלעכע סעריעס האבן געלאזט מאטעמאטיקער רעכענען <math>\ \pi</math>מיט פיל גרעסערער פרעציזקייט  ווי [[ארכימעד]] און אנדערע וואס האבן געניצט געאמעטרישע טעכניקן.<ref name="Ais" /> כאטש מען האט אויסגעניצט אומענדלעכע סעריעס פאר {{פי}}, איבערהויפט דורך אייראפעאישע מאטעמאטיקער ווי [[דזשיימס גרעגארי]] און [[גאטפריד ווילהעלם לייבניץ]], דעם דאזיגן צוגאנג האט מען שוין אנטפלעקט אין  [[אינדיע]] צווישן די יארן 1400 און 1500 צו דער ציווילער רעכענונג.<ref>{{harvnb|Roy|1990|pp=101–102}} {{harvnb|Arndt|Haenel|2006|pp=185–186}}</ref> די ערשטע געשריבענע באשרייבונג פון אן אומענדלעכער סעריע וואס מ'האט געקענט ניצן צו רעכענען {{פי}} איז געווען אויסגעלייגט אין סאנסקריט פערזן דורך דעם אינדישן אסטראנאם [[נילאקאנטא סאמאיאדזשי]] אין זיין ''[[טאנטראסאמגראהא]]'', בערך אין יאר 1500.<ref name="Roypp">{{harvnb|Roy|1990|pp=101–102}}</ref> די סעריעס ווערן געברענגט אן קיין באווייזונג, אבער עס קומען פאר באווייזן אין א שפעטערדיקער אינדישער ווערק, ''[[יוקטיבאהאסא]]'', פון בערך יאר 1530. נילאקאנטא שרייבט צו די סעריעס צו א פריערדיקן אינדישן מאטעמאטיקער, [[מאדהאווא פון סאנגאמאגראמא]], וואס האט געלעבט אומגעפער&nbsp;1350&nbsp;– &nbsp;1425.<ref name="Roypp" /> עטלעכע אומענדלעכע סעריעס ווערן באשריבן, איינשליסנדיק סעריעס פאר סינוס, טאנגענס און קאסינוס, וואס מען רופט היינט די [[מאדהאווא סעריע]] אדער [[לייבניץ פארמל פאר π|גרעגארי–לייבניץ סעריע]].<ref name="Roypp" /> מאדהאווא האט געניצט אומענדלעכע סעריעס צו שאצן {{פי}} ביז 11 ציפערן ארום יאר 1400, אבער ארום 1430 האט דער פערסישער מאטעמאטיקער [[דזשאמשיד אל-קאשי]] פארבעסערט די רעכענונג, מיט א פילעק־אלגאריטם.<ref>{{harvnb|Joseph|1991|p=264}}</ref>
די רעכענונג פון {{Math|π}} איז געווארן רעוואלוציאנירט דורך דער אנטוויקלונג פון [[אומענדלעכע סעריע]] טעכניקן אין די 16טע און 17טע יארהונדערטער. און אומענדלעכע סעריע איז דער צוגאב פון די עלעמענטן פון אן אומענדלעכן [[סעקווענץ]].<ref name="Ais">{{harvnb|Arndt|Haenel|2006|pp=185–191}}</ref> אומענדעלעכע סעריעס האבן געלאזט מאטעמאטיקער רעכענען <math>\ \pi</math>מיט פיל גרעסערער פרעציזקייט  ווי [[ארכימעד]] און אנדערע וואס האבן געניצט געאמעטרישע טעכניקן.<ref name="Ais" /> כאטש מען האט אויסגעניצט אומענדלעכע סעריעס פאר {{פי}}, איבערהויפט דורך אייראפעאישע מאטעמאטיקער ווי [[דזשעימס גרעגארי]] און [[גאטפריד ווילהעלם לייבניץ]], דעם דאזיגן צוגאנג האט מען שוין אנטפלעקט אין  [[אינדיע]] צווישן די יארן 1400 און 1500 צו דער ציווילער רעכענונג.<ref>{{harvnb|Roy|1990|pp=101–102}} {{harvnb|Arndt|Haenel|2006|pp=185–186}}</ref> די ערשטע געשריבענע באשרייבונג פון אן אומענדלעכער סעריע וואס מ'האט געקענט ניצן צו רעכענען {{פי}} איז געווען אויסגעלייגט אין סאנסקריט פערזן דורך דעם אינדישן אסטראנאם [[נילאקאנטא סאמאיאדזשי]] אין זיין ''[[טאנטראסאמגראהא]]'', בערך אין יאר 1500.<ref name="Roypp">{{harvnb|Roy|1990|pp=101–102}}</ref> די סעריעס ווערן געברענגט אן קיין באווייזונג, אבער עס קומען פאר באווייזן אין א שפעטערדיקער אינדישער ווערק, ''[[יוקטיבאהאסא]]'', פון בערך יאר 1530. נילאקאנטא שרייבט צו די סעריעס צו א פריערדיקן אינדישן מאטעמאטיקער, [[מאדהאווא פון סאנגאמאגראמא]], וואס האט געלעבט אומגעפער&nbsp;1350&nbsp;– &nbsp;1425.<ref name="Roypp" /> עטלעכע אומענדלעכע סעריעס ווערן באשריבן, איינשליסנדיק סעריעס פאר סינוס, טאנגענס און קאסינוס, וואס מען רופט היינט די [[מאדהאווא סעריע]] אדער [[לייבניץ פארמל פאר π|גרעגארי–לייבניץ סעריע]].<ref name="Roypp" /> מאדהאווא האט געניצט אומענדלעכע סעריעס צו שאצן {{פי}} ביז 11 ציפערן ארום יאר 1400, אבער ארום 1430 האט דער פערסישער מאטעמאטיקער [[דזשאמשיד אל-קאשי]] פארבעסערט די רעכענונג, מיט א פילעק־אלגאריטם.<ref>{{harvnb|Joseph|1991|p=264}}</ref>




שורה 93: שורה 93:
\frac{\sqrt{2+\sqrt{2+\sqrt2}}}2\ldots</math>
\frac{\sqrt{2+\sqrt{2+\sqrt2}}}2\ldots</math>


* [[לייבניצ'נס פארמל פאר π|גרעגארי-לייבניץ פארמל]], אויף די נעמען פון [[דזשיימס גרעגארי]] (1638–1675) און [[גאטפריד ווילהעלם לייבניץ|ווילהעלם לייבניץ]]. גרעגארי האט אנטפלעקט די פארמל אין [[1672]]. זי דערשיינט אויך אין דעם בוך Ganita-Yukti-Bhasa וואס דער אינדישער מאטעמאטיקער Jyesthadeva האט געשריבן אין דעם 16טן יארהונדערט. די פארמל איז
* [[לייבניצ'נס פארמל פאר π|גרעגארי-לייבניץ פארמל]], אויף די נעמען פון [[דזשעימס גרעגארי]] (1638–1675) און [[גאטפריד ווילהעלם לייבניץ|ווילהעלם לייבניץ]]. גרעגארי האט אנטפלעקט די פארמל אין [[1672]]. זי דערשיינט אויך אין דעם בוך Ganita-Yukti-Bhasa וואס דער אינדישער מאטעמאטיקער Jyesthadeva האט געשריבן אין דעם 16טן יארהונדערט. די פארמל איז


: <math>\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}</math>
: <math>\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}</math>