רוי:דעריוואטיוו
א דעריוואַטיוו פון אַ פונקציע איז דער באַרגנייג אויף דער באַריר־לינע ביי א פונקט. א דעריוואַטיוו באַשרייבט די וואַקסיקייט פון אַ פונקציע. דער היפּוך פון א דעריוואַטיוו איז אַן אינטעגראל. דער דעריוואַטיוו ווערט געפונען געווענליך אין מאַטעמאַטיק און פיזיק.
אין פיזיק, דער דעריוואַטיוו פון פּאָזיציע איז גיכקייט, און דער דעריוואַטיוו פון גיכקייט איז פאַרגיכערונג.
דעפיניציע
דערמאַנט זיך אַז די פונקציע פאַר אַ גראָדער ליניע איז . דער וואַריאבל איז דער באַרגנייג פון דער לינע, ד"ה ווען :
דעריבער א שניידלינע (secant) וואָס שניידט זיך איבער א פונקצע ביי און האָט דעם באַרגנייג
ווען זענעך נאָענט איז בערך דער באַרגנייג אויף דער באַריר־לינע. באַניצנדיק קאַלקולוס קענען מיר ניצן א גרעניץ כּדי גורם זיין . בכן איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a=a(x_1) } אַן איינבאַטרעפיקע פונקציע. מ'רופט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a(x) } דעם דעריוואַטיוו פון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } .
דער דעריוואַטיוו ווערט אָנגעשריבן אין מאַטעמאַטישער נאָטאַציע ווי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x) } צי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} f(x) } . טאָ מען שרייבט:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f'(x) &= \lim_{x_2\to x}\frac{f(x)-f(x_2)}{x-x_2}\\ &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \end{align} }
די לעצטע שורה ניצט דעם אונטערשטעל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x-x_2=h } .
דעריוואַטיוו טעאָרעמען
פארהאן כּלערליי כּללים וואָס העלפן אונז צו געפינען דעם דעריוואַטיוו.
כּפלען מיט א שטענדיקער גרייס
אויב מיר ווילן דיפערענצירן א פונקציע מאָל אַ שטענדיקע גרייס:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}(cf(x)) = cf'(x) \end{align} }
סך־הכּל־כּלל
אויב מיר ווילן דיפערענצירן א פונקציע פּלוס אַ פונקציע ניצט מען דעם סך־הכּל־כּלל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}\left(f(x)+g(x)\right) = f'(x)+g'(x) \end{align} }
קייט־כּלל
אויב מיר ווילן דיפערענצירן א פונקציע פון א פונקציע ניצט מען דעם קייט־כּלל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) \end{align} }
פּראָדוקט־כּלל
אויב מיר ווילן דיפערענצירן אַ פראָדוקט פון צוויי פונקציעס ניצט מען דעם פּראָדוקט־כּלל:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}f(x)g(x) = f'(x)g(x)+g'(x)f(x) \end{align} }
ביישפּילן
קוואַדראַטישע פונקציע
בדרך משל לאָמיר דיפערענצירן א פראָסטע פונקציע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2 } (קוואַדראַטישע פונקציע) ניצנדיק דער דעפיניציע
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}x^2 &= \lim_{h\to 0} \frac{(x+h)^2-x^2}{h}\\ \ &= \lim_{h\to 0} \frac{(x^2+2xh+h^2)-x^2}{h}\\ \ &= \lim_{h\to 0} \frac{2xh+h^2}{h}\\ \ &= \lim_{h\to 0} (2x+h)\\ \ &= 2x \end{align} }
אָדער זינט הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x=1 } (זעט "דעפיניציע" אין דער הייך), פּראָדוקט־כּלל באַווייזט
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}x^2 &= \frac{d}{dx}(x\cdot x)\\ \ &= \left(\frac{d}{dx}x\right)x+x\left(\frac{d}{dx}x\right)\\ \ &= (1)x+x(1)\\ \ &= 2x\\ \end{align} }
קוואַדראַט־וואָרצל
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}\sqrt{x} &= \lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}\\ \ &= \lim_{h\to 0} \left(\frac{\sqrt{x+h}-\sqrt{x}}{h}\cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)\\ \ &= \lim_{h\to 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}\\ \ &= \lim_{h\to 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}\\ \ &= \frac{1}{2\sqrt{x}}\\ \end{align} }
דאס איז נישט קיין המכלול ארטיקל, בלויז עפעס וואס ליגט דא ביז עס וועט ערזעצט ווערן מיט בעסערס. שרייבט עס איבער!