אונטערשייד צווישן ווערסיעס פון "רוי:קוואדראטישע גלייכונג"
קפיצה לניווט
קפיצה לחיפוש
ק (הוספת קישור בינוויקי he:משוואה ממעלה שנייה) |
ק (דעסקריפציע) |
||
שורה 1: | שורה 1: | ||
{{דעסקריפציע||ענגליש=polynomial equation in a single variable where the highest exponent of the variable is 2|העב=סוג של משוואה פולינומיאלית|דייטש=Gleichung mit einem Polynom zweiten Grades deren Lösungsmenge ihre Nullstellen ergibt|}} | |||
א '''[[גלייכונג]] פון דער צווייטער [[מדריגה (מאטעמאטיק)|מדריגה]]''' רופט מען א '''קוואדראטישע גלייכונג'''. עס זעט אויס אזוי: <math>\ ax^2 + bx + c=0 </math> ווען <math>\ a, b, c</math> זענען פאראמעטערס, און <math>\ x</math> איז דער [[וואריאבל]]. | א '''[[גלייכונג]] פון דער צווייטער [[מדריגה (מאטעמאטיק)|מדריגה]]''' רופט מען א '''קוואדראטישע גלייכונג'''. עס זעט אויס אזוי: <math>\ ax^2 + bx + c=0 </math> ווען <math>\ a, b, c</math> זענען פאראמעטערס, און <math>\ x</math> איז דער [[וואריאבל]]. | ||
שורה 22: | שורה 23: | ||
{{קרד/ויקי/יידיש}} | {{קרד/ויקי/יידיש}} | ||
[[he:משוואה ממעלה שנייה]] | [[he:משוואה ממעלה שנייה]] | ||
[[קאַטעגאָריע:וויקידאטא שפראכן דעסקריפציע]] |
רעוויזיע פון 22:38, 23 אקטאבער 2023
א גלייכונג פון דער צווייטער מדריגה רופט מען א קוואדראטישע גלייכונג. עס זעט אויס אזוי: ווען זענען פאראמעטערס, און איז דער וואריאבל.
דאס פאראמעטער איז א קוואדראטישער שורש און פארבייט יעדער נומער א חוץ א נול, אבער די פאראמעטערס און קענען אויך זיין פארביטן מיט א נול.
די פארמולע צו רעכנען א קוואדראטישע גלייכונג איז ווי פאלגנד:
אויך איז דא גלייכונגען פון דער דריטער און פערטער מדרגה.
היסטאריע
די בבלישע מאטעמאטיקער האבן שוין געהאט א מעטאד צו לייזן געוויסע קוואדראטישע גלייכונגען.
אין יאר 628 האט דער אינדישער מאטעמאטיקער בראהמאגופטא געגעבן די ערשטע אויסדרוקלעכע לייזונג פון דער קוואדראטישע גלייכונג אזוי:
- צו דער אבסאלוטער נומער געטאפלט מיט פיר מאל דעם [קאעפיציענט פונעם] קוואדראט, לייגט צו דעם קוואדראט פונעם [קאעפיציענט פונעם] מיטלען טערמין; דער קוואדראטישער ווארצל פונעם זעלבן, מינוס דעם [קאעפיציענט פונעם] מיטלען טערמין, צעטיילט מיט צוויימאל דעם [קאעפיציענט פונעם] קוואדראט איז דער ווערט. (בראהמאספוטאסידדהאנטא, קאלברוק איבערזעצונג, 1817, עמוד 346).
דאס איז גלייכווערטיק מיט:
דאס איז נישט קיין המכלול ארטיקל, בלויז עפעס וואס ליגט דא ביז עס וועט ערזעצט ווערן מיט בעסערס. שרייבט עס איבער!