אונטערשייד צווישן ווערסיעס פון "רוי:ציילן"

6 בייטן אראפגענומען ,  פֿאַר 2 יאָר
ק
החלפת טקסט – "ייַ" ב־"יי"
ק (החלפת טקסט – "עטלעכע" ב־"עטליכע")
ק (החלפת טקסט – "ייַ" ב־"יי")
שורה 3: שורה 3:


== ציילן אין מאטעמאטיק ==
== ציילן אין מאטעמאטיק ==
אין מאטעמאטיק, איז דער יסוד פון ציילן אַ געזעמעל און דערגייען אַ רעזולטאַט ''n'', איז צו שטעלן  אַ קאָרעספּאָנדענץ (אָדער צוויי-יעקטיווע פונקציע) פון דעם געזעמעל מיטן געזעמל פון נומערן {1, 2,   ..., ''n'' }. א פונדאַמענטאַלער פאַקט וואָס קען ווערן באוויזן דורך מאַטאַמעטישער אינדוקציע איז אַז עס עקזיסטירט נישט קיין  צוויי-יעקטיווע פונקציע צווישן {1, 2,   ..., ''n'' } און {1, 2,   ..., ''m'' } סייַדן ווען {{נישט וויקלען|1=''n'' = ''m''}} ; דער פאַקט (צוזאַמען מיט דעם פאַקט אַז צוויי צוויי-יעקטיווע פונקציעס קאמבינירן צו שאפן נאך א צוויי-יעקטיווע פונקציע) גאראנטירט אַז ציילן דעם זעלבן געזעמל עטליכע מאל אין פאַרשידענע וועגן קען קיינמאָל רעזולטירן אין באזונדערע נומערן (סייַדן אַ טעות איז געמאכט). דאָס איז די פונדאַמענטאַל מאַטאַמאַטיקאַל טעאָרעם וואָס גיט קאַונטינג זייַן ציל; אויב איר רעכענען אַ (ענדלעך) סכום, די ענטפער איז די זעלבע.  
אין מאטעמאטיק, איז דער יסוד פון ציילן אַ געזעמעל און דערגייען אַ רעזולטאַט ''n'', איז צו שטעלן  אַ קאָרעספּאָנדענץ (אָדער צוויי-יעקטיווע פונקציע) פון דעם געזעמעל מיטן געזעמל פון נומערן {1, 2,   ..., ''n'' }. א פונדאַמענטאַלער פאַקט וואָס קען ווערן באוויזן דורך מאַטאַמעטישער אינדוקציע איז אַז עס עקזיסטירט נישט קיין  צוויי-יעקטיווע פונקציע צווישן {1, 2,   ..., ''n'' } און {1, 2,   ..., ''m'' } סיידן ווען {{נישט וויקלען|1=''n'' = ''m''}} ; דער פאַקט (צוזאַמען מיט דעם פאַקט אַז צוויי צוויי-יעקטיווע פונקציעס קאמבינירן צו שאפן נאך א צוויי-יעקטיווע פונקציע) גאראנטירט אַז ציילן דעם זעלבן געזעמל עטליכע מאל אין פאַרשידענע וועגן קען קיינמאָל רעזולטירן אין באזונדערע נומערן (סיידן אַ טעות איז געמאכט). דאָס איז די פונדאַמענטאַל מאַטאַמאַטיקאַל טעאָרעם וואָס גיט קאַונטינג זיין ציל; אויב איר רעכענען אַ (ענדלעך) סכום, די ענטפער איז די זעלבע.  


אין פיל געזעמלען וואָס מען טרעפט אין מאטעמאטיק, איז נישט מעגלעך צו שאפן א צוויי-יעקטיווע פונקציע מיט {1, 2,   ..., ''n'' } פאַר ''קיין'' [[נאטירלעכע צאל|נאַטירליכער נומער]] ''n'' ; די געזעמלען זענען גערופן אומענדלעכע געזעמלען.   
אין פיל געזעמלען וואָס מען טרעפט אין מאטעמאטיק, איז נישט מעגלעך צו שאפן א צוויי-יעקטיווע פונקציע מיט {1, 2,   ..., ''n'' } פאַר ''קיין'' [[נאטירלעכע צאל|נאַטירליכער נומער]] ''n'' ; די געזעמלען זענען גערופן אומענדלעכע געזעמלען.