אונטערשייד צווישן ווערסיעס פון "רוי:קוואדראט ווארצל"

ק
החלפת טקסט – "זיינען" ב־"זענען"
ק (טשעקטי און אנדערע רייניגונג, typos fixed: װ ← וו (3))
ק (החלפת טקסט – "זיינען" ב־"זענען")
שורה 2: שורה 2:


צום ביישפיל:
צום ביישפיל:
* 2 און 2- זיינען די קוואדראטישע ווארצלען פון 4, ווייל 2 מאל 2 און 2- מאל 2- זיינען גלייך 4.
* 2 און 2- זענען די קוואדראטישע ווארצלען פון 4, ווייל 2 מאל 2 און 2- מאל 2- זענען גלייך 4.
* 3 און 3- זיינען די קוואדראטישע ווארצלען פון 9, ווייל 3 מאל 3 און 3- מאל 3- זיינען גלייך 9.
* 3 און 3- זענען די קוואדראטישע ווארצלען פון 9, ווייל 3 מאל 3 און 3- מאל 3- זענען גלייך 9.


יעדער [[נומער]] וואס איז העכער פון [[נול]] קען האבן צוויי קוואדראטישע צאלן, א פאזיטיוו און א נעגאטיוו נומער, (אזוי ווי מיר האבן פריער געזען אז סיי 2 און סיי 2- זיינען די קוואדראטישע צאלן פון 4). ווייל מינוס מאל מינוס איז שטענדיק פלוס. א נול האט אימער נאר איין קוואדראטישער ווארצל, און דאס איז א נול אליין. יעדער [[רעאלע צאל]] וואס איז קלענער פון נול קען נישט זיין א קוואדראטישע צאל, ווייל קיין נומער וואס מען וועט טאפלען מיט זיך אליין וועט נישט צוברענגען צו א מינוס, און דערפאר <math>\sqrt -4 \ne {a}</math> איז א פאלשע צאל.
יעדער [[נומער]] וואס איז העכער פון [[נול]] קען האבן צוויי קוואדראטישע צאלן, א פאזיטיוו און א נעגאטיוו נומער, (אזוי ווי מיר האבן פריער געזען אז סיי 2 און סיי 2- זענען די קוואדראטישע צאלן פון 4). ווייל מינוס מאל מינוס איז שטענדיק פלוס. א נול האט אימער נאר איין קוואדראטישער ווארצל, און דאס איז א נול אליין. יעדער [[רעאלע צאל]] וואס איז קלענער פון נול קען נישט זיין א קוואדראטישע צאל, ווייל קיין נומער וואס מען וועט טאפלען מיט זיך אליין וועט נישט צוברענגען צו א מינוס, און דערפאר <math>\sqrt -4 \ne {a}</math> איז א פאלשע צאל.


די פאזיטיווע קוואדראט ווארצל שרייבט מען מיט דעם סימבאל <math>\sqrt {a}</math>. צום ביישפיל <math>\sqrt 4</math> איז גלייך 2.
די פאזיטיווע קוואדראט ווארצל שרייבט מען מיט דעם סימבאל <math>\sqrt {a}</math>. צום ביישפיל <math>\sqrt 4</math> איז גלייך 2.