אונטערשייד צווישן ווערסיעס פון "רוי:דעריוואטיוו"

ק
החלפת טקסט – "{{דעסקריפציע||ענגליש=" ב־"{{דעסקריפציע||ענגליש = "
ק (1 רעוויזיע אימפארטירט: אימפארטירט פון די יידישע וויקיפעדיע, זע ביישטייערער ליסטע)
ק (החלפת טקסט – "{{דעסקריפציע||ענגליש=" ב־"{{דעסקריפציע||ענגליש = ")
 
(15 מיטלסטע ווערסיעס פון 5 באַניצער נישט געוויזן.)
שורה 1: שורה 1:
[[File:Tangent to a curve.svg|thumb|אַ פֿונקציע ([[שוואַרץ]]) מיט זײַן באַריר־לינע ([[רויט]]). דער באַרגנייג פֿון דער באַריר־לינע איז דער דעריוואַטיוו.]]
{{דעסקריפציע||ענגליש = operation in calculus|העב=מושג בחשבון אינפיניטסימלי|דייטש=Begriff der Mathematik|}}
[[File:Tangent to a curve.svg|thumb|אַ פונקציע ([[שוואַרץ]]) מיט זיין באַריר־לינע ([[רויט]]). דער באַרגנייג פון דער באַריר־לינע איז דער דעריוואַטיוו.]]


א '''דעריוואַטיוו''' פון אַ [[פונקציע|פֿונקציע]] איז דער באַרגנייג אויף דער [[באריר-לינע|באַריר־לינע]] בײַ א פֿונקט. א דעריוואַטיוו באַשרייבט די וואַקסיקייט פון אַ פֿונקציע. דער היפּוך פֿון א דעריוואַטיוו איז אַן [[אינטעגראל]]. דער דעריוואַטיוו ווערט געפֿונען געוויינטלעך אין [[מאַטעמאַטיק]] און [[פֿיזיק]].  
א '''דעריוואַטיוו''' פון אַ [[פונקציע]] איז דער באַרגנייג אויף דער [[באריר-לינע|באַריר־לינע]] ביי א פונקט. א דעריוואַטיוו באַשרייבט די וואַקסיקייט פון אַ פונקציע. דער היפּוך פון א דעריוואַטיוו איז אַן [[אינטעגראל]]. דער דעריוואַטיוו ווערט געפונען געווענליך אין [[מאַטעמאַטיק]] און [[פיזיק]].  


אין פֿיזיק, דער דעריוואַטיוו פֿון פּאָזיציע איז גיכקייט, און דער דעריוואַטיוו פֿון גיכקייט איז פֿאַרגיכערונג.
אין פיזיק, דער דעריוואַטיוו פון פּאָזיציע איז גיכקייט, און דער דעריוואַטיוו פון גיכקייט איז פאַרגיכערונג.


==דעפֿיניציע==
==דעפיניציע==
[[File:Tangent animation.gif|thumb|250px|א שנײַדלינע ווערט א באריר-לינע ווען <math>\Delta x \to 0</math>.]]
[[File:Tangent animation.gif|thumb|250px|א שניידלינע ווערט א באריר-לינע ווען <math>\Delta x \to 0</math>.]]


דערמאַנט זיך אַז די פֿונקציע פאַר אַ גראָדער ליניע איז <math> y(x)=ax+b </math>. דער וואַריאבל <math> a </math> איז דער באַרגנייג פון דער לינע, ד"ה ווען <math> x_1\neq x_2 </math>:
דערמאַנט זיך אַז די פונקציע פאַר אַ גראָדער ליניע איז <math> y(x)=ax+b </math>. דער וואַריאבל <math> a </math> איז דער באַרגנייג פון דער לינע, ד"ה ווען <math> x_1\neq x_2 </math>:


:<math>\begin{align}
:<math>\begin{align}
שורה 15: שורה 16:
\end{align} </math>
\end{align} </math>


דעריבער א [[שניידלינע|שנײַדלינע]] (secant) וואָס שנײַדט זיך איבער א פֿונקצע <math>f(x)</math> בײַ <math> x=x_1 </math> און <math> x=x_2 </math> האָט דעם באַרגנייג  
דעריבער א [[שניידלינע|שניידלינע]] (secant) וואָס שניידט זיך איבער א פונקצע <math>f(x)</math> ביי <math> x=x_1 </math> און <math> x=x_2 </math> האָט דעם באַרגנייג  


:<math>\begin{align}
:<math>\begin{align}
שורה 21: שורה 22:
\end{align} </math>
\end{align} </math>


ווען <math> x_1,x_2</math> זענעך נאָענט איז <math> a(x_1,x_2) </math> בערך דער באַרגנייג אויף דער באַריר־לינע. באַניצנדיק [[קאלקולוס|קאַלקולוס]] קענען מיר ניצן א [[גרעניץ (מאטעמאטיק)|גרעניץ]] כּדי גורם זײַן <math> x_2 \to x_1</math>. בכן איז <math> a=a(x_1) </math> אַן איינבאַטרעפֿיקע פֿונקציע. מ'רופֿט <math>a(x) </math> דעם דעריוואַטיוו פֿון <math> f(x) </math>.
ווען <math> x_1,x_2</math> זענעך נאָענט איז <math> a(x_1,x_2) </math> בערך דער באַרגנייג אויף דער באַריר־לינע. באַניצנדיק [[קאלקולוס|קאַלקולוס]] קענען מיר ניצן א [[גרעניץ (מאטעמאטיק)|גרעניץ]] כּדי גורם זיין <math> x_2 \to x_1</math>. בכן איז <math> a=a(x_1) </math> אַן איינבאַטרעפיקע פונקציע. מ'רופט <math>a(x) </math> דעם דעריוואַטיוו פון <math> f(x) </math>.


דער דעריוואַטיוו ווערט אָנגעשריבן אין [[מאטעמאטישע נאטאציע|מאַטעמאַטישער נאָטאַציע]] ווי <math> f'(x) </math> צי <math> \frac{d}{dx} f(x) </math>. טאָ מע שרײַבט:
דער דעריוואַטיוו ווערט אָנגעשריבן אין [[מאטעמאטישע נאטאציע|מאַטעמאַטישער נאָטאַציע]] ווי <math> f'(x) </math> צי <math> \frac{d}{dx} f(x) </math>. טאָ מען שרייבט:


:<math>\begin{align}
:<math>\begin{align}
שורה 33: שורה 34:


== דעריוואַטיוו טעאָרעמען ==
== דעריוואַטיוו טעאָרעמען ==
פאַראַן כּלערליי כּללים וואָס העלפֿן אונדז צו געפֿינען דעם דעריוואַטיוו.
פארהאן כּלערליי כּללים וואָס העלפן אונז צו געפינען דעם דעריוואַטיוו.


===כּפֿלען מיט א שטענדיקער גרייס===
===כּפלען מיט א שטענדיקער גרייס===
אויב מיר ווילן דיפֿערענצירן א פֿונקציע מאָל אַ שטענדיקע גרייס:
אויב מיר ווילן דיפערענצירן א פונקציע מאָל אַ שטענדיקע גרייס:
:<math>\begin{align}
:<math>\begin{align}
\frac{d}{dx}(cf(x)) = cf'(x)
\frac{d}{dx}(cf(x)) = cf'(x)
שורה 42: שורה 43:


=== סך־הכּל־כּלל ===
=== סך־הכּל־כּלל ===
אויב מיר ווילן דיפֿערענצירן א פֿונקציע פּלוס אַ פֿונקציע ניצט מען דעם סך־הכּל־כּלל:
אויב מיר ווילן דיפערענצירן א פונקציע פּלוס אַ פונקציע ניצט מען דעם סך־הכּל־כּלל:


:<math>\begin{align}
:<math>\begin{align}
שורה 49: שורה 50:


=== קייט־כּלל ===
=== קייט־כּלל ===
אויב מיר ווילן דיפערענצירן א פֿונקציע פֿון א פֿונקציע ניצט מען דעם קייט־כּלל:
אויב מיר ווילן דיפערענצירן א פונקציע פון א פונקציע ניצט מען דעם קייט־כּלל:


:<math>\begin{align}
:<math>\begin{align}
שורה 56: שורה 57:


=== פּראָדוקט־כּלל ===
=== פּראָדוקט־כּלל ===
אויב מיר ווילן דיפערענצירן אַ פראָדוקט פֿון צוויי פֿונקציעס ניצט מען דעם פּראָדוקט־כּלל:
אויב מיר ווילן דיפערענצירן אַ פראָדוקט פון צוויי פונקציעס ניצט מען דעם פּראָדוקט־כּלל:


:<math>\begin{align}
:<math>\begin{align}
שורה 64: שורה 65:




== בײַשפּילן ==
== ביישפּילן ==


=== קוואַדראַטישע פֿונקציע ===
=== קוואַדראַטישע פונקציע ===
בדרך משל לאָמיר דיפערענצירן א פראָסטע פֿונקציע <math>f(x) = x^2 </math> ([[קוואדראטישע פונקציע|קוואַדראַטישע פֿונקציע]]) ניצנדיק דער דעפֿיניציע
בדרך משל לאָמיר דיפערענצירן א פראָסטע פונקציע <math>f(x) = x^2 </math> ([[קוואדראטישע פונקציע|קוואַדראַטישע פונקציע]]) ניצנדיק דער דעפיניציע


<br />
<br />
שורה 79: שורה 80:
\end{align} </math>
\end{align} </math>


אָדער זינט <math>\frac{d}{dx} x=1 </math> (זעט „דעפֿיניציע“ אין דער הייך), פּראָדוקט־כּלל באַווייזט
אָדער זינט <math>\frac{d}{dx} x=1 </math> (זעט "דעפיניציע" אין דער הייך), פּראָדוקט־כּלל באַווייזט


:<math>\begin{align}
:<math>\begin{align}
שורה 99: שורה 100:


[[קאַטעגאָריע:מאטעמאטיק]]
[[קאַטעגאָריע:מאטעמאטיק]]
[[קאַטעגאָריע:אויף יידיש]]
[[קאַטעגאָריע:וויכטיגע ארטיקלען]]
{{קרד/ויקי/יידיש}}
[[he:נגזרת]]