אונטערשייד צווישן ווערסיעס פון "רוי:גלייכשענקליגער דרייעק"

פון המכלול
קפיצה לניווט קפיצה לחיפוש
(געשאפן דורך איבערזעצן דעם בלאט "Isosceles triangle")
 
ק (החלפת טקסט – "{{דעסקריפציע||ענגליש=" ב־"{{דעסקריפציע||ענגליש = ")
 
(8 מיטלסטע ווערסיעס פון 6 באַניצער נישט געוויזן.)
שורה 1: שורה 1:
{{דעסקריפציע||ענגליש = triangle with two sides congruent and two angles equal|דייטש=Dreieck mit zwei gleich langen Seiten|}}
[[טעקע:Triangle-isosceles.svg|לינקס|120x120פיקס| Isosceles triangle ]]
[[טעקע:Triangle-isosceles.svg|לינקס|120x120פיקס| Isosceles triangle ]]
אין [[געאמעטריע]], איז אַ '''גלייכשענקליגער דרייַעק''' אַ [[דרייעק]] וואָס האט צוויי ריפן מיט גלייכע לענג.  
אין [[געאמעטריע]], איז אַ '''גלייכשענקליגער דרייעק''' אַ [[דרייעק]] וואָס האט צוויי ריפן מיט גלייכע לענג.  


די מאַטאַמאַטישע שטודיע פון גלייכשענקליגע דרייעקן גייט צוריק צו אוראלט־עגיפּטישער מאַטעמאַטיק און בבלישער מאטעמאטיק . גלייכשענקליגע דרייעקן זענען געווארן געניצט ווי באַפּוצונג שוין פון פריערירעגע צייטן, און באווייזן זיך אָפט אין ארכיטעקטור און פּלאַנירונג.  
די מאַטאַמאַטישע שטודיע פון גלייכשענקליגע דרייעקן גייט צוריק צו אוראלט־עגיפּטישער מאַטעמאַטיק און בבלישער מאטעמאטיק . גלייכשענקליגע דרייעקן זענען געווארן געניצט ווי באַפּוצונג שוין פון פריערירעגע צייטן, און באווייזן זיך אָפט אין ארכיטעקטור און פּלאַנירונג.  


די צוויי גלייכע ריפן זענען גערופן די שענקלעך און דער דריטער ריפ איז גערופן דער באַזיס פון דעם דרייעק. די הייך, שטח און פּערימעטער פונעם דרייעק קען מען רעכענען  דורך פּשוט פארמלען פון די לענג פון די שענקלעך און דער באַזע. יעדער גלייכשענקליגער דרייַעק האט אַ סימעטריע־אַקס לענגאויס דעם פּערפּענדיקולאַר-ביסעקטאָר פון זייַן באַזיס. די צוויי ווינקלען קעגנאיבער די שענקלעך זענען גלייַך און זענען שטענדיק שארף, אַזוי טוט מען קלאַסיפיצירן א גלייכשענקלדיגן דרייעק ווי שארף, גראד אָדער טעמפ לויט דער גרייס פונעם ווינקל צווישן די צוויי שענקלעך.  
די צוויי גלייכע ריפן זענען גערופן די שענקלעך און דער דריטער ריפ איז גערופן דער באַזיס פון דעם דרייעק. די הייך, שטח און פּערימעטער פונעם דרייעק קען מען רעכענען  דורך פּשוט פארמלען פון די לענג פון די שענקלעך און דער באַזע. יעדער גלייכשענקליגער דרייעק האט אַ סימעטריע־אַקס לענגאויס דעם פּערפּענדיקולאַר-ביסעקטאָר פון זיין באַזיס. די צוויי ווינקלען קעגנאיבער די שענקלעך זענען גלייך און זענען שטענדיק שארף, אַזוי טוט מען קלאַסיפיצירן א גלייכשענקלדיגן דרייעק ווי שארף, גראד אָדער טעמפ לויט דער גרייס פונעם ווינקל צווישן די צוויי שענקלעך.  
[[קאַטעגאָריע:געאמעטריע]]
[[קאַטעגאָריע:געאמעטריע]]
[[קאטעגאריע:אויף יידיש]]
{{קרד/ויקי/יידיש}}
[[he:משולש שווה-שוקיים]]

יעצטיגע רעוויזיע זינט 13:35, 26 אקטאבער 2023

Isosceles triangle

אין געאמעטריע, איז אַ גלייכשענקליגער דרייעק אַ דרייעק וואָס האט צוויי ריפן מיט גלייכע לענג.

די מאַטאַמאַטישע שטודיע פון גלייכשענקליגע דרייעקן גייט צוריק צו אוראלט־עגיפּטישער מאַטעמאַטיק און בבלישער מאטעמאטיק . גלייכשענקליגע דרייעקן זענען געווארן געניצט ווי באַפּוצונג שוין פון פריערירעגע צייטן, און באווייזן זיך אָפט אין ארכיטעקטור און פּלאַנירונג.

די צוויי גלייכע ריפן זענען גערופן די שענקלעך און דער דריטער ריפ איז גערופן דער באַזיס פון דעם דרייעק. די הייך, שטח און פּערימעטער פונעם דרייעק קען מען רעכענען דורך פּשוט פארמלען פון די לענג פון די שענקלעך און דער באַזע. יעדער גלייכשענקליגער דרייעק האט אַ סימעטריע־אַקס לענגאויס דעם פּערפּענדיקולאַר-ביסעקטאָר פון זיין באַזיס. די צוויי ווינקלען קעגנאיבער די שענקלעך זענען גלייך און זענען שטענדיק שארף, אַזוי טוט מען קלאַסיפיצירן א גלייכשענקלדיגן דרייעק ווי שארף, גראד אָדער טעמפ לויט דער גרייס פונעם ווינקל צווישן די צוויי שענקלעך.

דאס איז נישט קיין המכלול ארטיקל, בלויז עפעס וואס ליגט דא ביז עס וועט ערזעצט ווערן מיט בעסערס. שרייבט עס איבער!