אונטערשייד צווישן ווערסיעס פון "רוי:פאקטאריזאציע"
(קרדיט + קטגוריות) |
ק (טשעקטי און אנדערע רייניגונג, typos fixed: ײַ ← יי (2), ײ ← יי) |
||
| שורה 1: | שורה 1: | ||
אין [[מאטעמאטיק]] איז '''פאַקטאָריזאַציע''' ({{שפראך-en|factorization}}) א וועג פון צענעמען א מאטעמאטישע [[צאל]] אויף עלעמענטן, וועלכע הייסן '''פאקטארן''', אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל. | אין [[מאטעמאטיק]] איז '''פאַקטאָריזאַציע''' ({{שפראך-en|factorization}}) א וועג פון צענעמען א מאטעמאטישע [[צאל]] אויף עלעמענטן, וועלכע הייסן '''פאקטארן''', אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל. | ||
צום ביישפיל די נומער 6936 קען מען | צום ביישפיל די נומער 6936 קען מען צעלייגן אזוי: 17<sup>2</sup> · 3 · 2<sup>3</sup> = 6936 | ||
דאס זעלבע איז אויב מיר האבן א [[פאלינאם]] ''x''<sup>2</sup> - 4, קען מען צענעמען צו די פאקטארן אזוי: (''x'' - 2)(''x'' + 2) לויט א באשטימטער [[פארמולע]]. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", | דאס זעלבע איז אויב מיר האבן א [[פאלינאם]] ''x''<sup>2</sup> - 4, קען מען צענעמען צו די פאקטארן אזוי: (''x'' - 2)(''x'' + 2) לויט א באשטימטער [[פארמולע]]. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", דייטש: "die Differenz zweier Quadratzahlen"): | ||
(a<sup> | (a<sup> 2</sup> - b<sup>2</sup> = (a + b)(a - b | ||
אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> + 4x + 4, באניצט מען די אידענטיטעט: | אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> + 4x + 4, באניצט מען די אידענטיטעט: | ||
| שורה 13: | שורה 13: | ||
דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 2<sup>2</sup> איז 4. דאן מען שרייבט: | דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 2<sup>2</sup> איז 4. דאן מען שרייבט: | ||
<sup>2</sup>(x<sup>2</sup> + 4x + | <sup>2</sup>(x<sup>2</sup> + 4x + 4 = (x + 2 | ||
אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> - 4x + 4 באניצט מען די אידענטיטעט: | אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> - 4x + 4 באניצט מען די אידענטיטעט: | ||
| שורה 21: | שורה 21: | ||
דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 2<sup>2</sup>- איז 4. דאן מען שרייבט: | דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 2<sup>2</sup>- איז 4. דאן מען שרייבט: | ||
<sup>2</sup>(x<sup>2</sup> - 4x + | <sup>2</sup>(x<sup>2</sup> - 4x + 4 = (x - 2 | ||
== גאנצע צאל == | == גאנצע צאל == | ||
אויב מיר האָבן, למשל, אַ [[צוזאמענגעזעצטע צאל|צוזאַמענגעזעצטע צאָל]]: <math>\ 4</math>, און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל | אויב מיר האָבן, למשל, אַ [[צוזאמענגעזעצטע צאל|צוזאַמענגעזעצטע צאָל]]: <math>\ 4</math>, און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל בלייבן א [[נאטירלעכע צאל|נאַטירלעכע צאָל]] (אויסער מיט 4 אליין), וואָס דאָס איז <math>\ 2</math> און מיר באקומען די פאַקטאָריזאַציע: <math>\ 2*2</math>. | ||
לאמיר נעמען מער א קאמפליצירטע נומער: <math>\ 30</math>. מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז <math>\ 3</math> (ווייל <math>\ 3*10=30</math>). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א [[פרימצאל]] וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף <math>\ 2*5</math>, אזוי ווייסן מיר אז דער גורם צו 30 איז: <math>\ 3*2*5</math>. | לאמיר נעמען מער א קאמפליצירטע נומער: <math>\ 30</math>. מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז <math>\ 3</math> (ווייל <math>\ 3*10=30</math>). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א [[פרימצאל]] וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף <math>\ 2*5</math>, אזוי ווייסן מיר אז דער גורם צו 30 איז: <math>\ 3*2*5</math>. | ||
| שורה 34: | שורה 34: | ||
[[ | [[קאַטעגאָריע:אלגעברע]] | ||
[[ | [[קאַטעגאָריע:אומבאקוקט]] | ||
[[ | [[קאַטעגאָריע:אויף יידיש]] | ||
{{קרד/ויקי/יידיש}} | {{קרד/ויקי/יידיש}} | ||
רעוויזיע פון 22:22, 8 דעצעמבער 2022
אין מאטעמאטיק איז פאַקטאָריזאַציע (ענגליש: factorization) א וועג פון צענעמען א מאטעמאטישע צאל אויף עלעמענטן, וועלכע הייסן פאקטארן, אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל.
צום ביישפיל די נומער 6936 קען מען צעלייגן אזוי: 172 · 3 · 23 = 6936
דאס זעלבע איז אויב מיר האבן א פאלינאם x2 - 4, קען מען צענעמען צו די פאקטארן אזוי: (x - 2)(x + 2) לויט א באשטימטער פארמולע. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", דייטש: "die Differenz zweier Quadratzahlen"):
(a 2 - b2 = (a + b)(a - b
אז מען פאקטאריזירט דעם פאלינאם x2 + 4x + 4, באניצט מען די אידענטיטעט:
a + b)2 = a2 + 2ab + b2)
דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 22 איז 4. דאן מען שרייבט:
2(x2 + 4x + 4 = (x + 2
אז מען פאקטאריזירט דעם פאלינאם x2 - 4x + 4 באניצט מען די אידענטיטעט:
a - b)2 = a2 - 2ab + b2)
דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 22- איז 4. דאן מען שרייבט:
2(x2 - 4x + 4 = (x - 2
גאנצע צאל
אויב מיר האָבן, למשל, אַ צוזאַמענגעזעצטע צאָל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} , און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל בלייבן א נאַטירלעכע צאָל (אויסער מיט 4 אליין), וואָס דאָס איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2} און מיר באקומען די פאַקטאָריזאַציע: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2*2} .
לאמיר נעמען מער א קאמפליצירטע נומער: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 30} . מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3} (ווייל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3*10=30} ). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א פרימצאל וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2*5} , אזוי ווייסן מיר אז דער גורם צו 30 איז: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3*2*5} .
פאקטאריזירן דורך ארויסנעמען א געמיינזאמער פאקטאר
אויב מיר האבן א חשבון מיט צוגאב און/אדער אראפנעם, צום ביישפיל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 + 8} און מיר ווילן דאס צעגלידערן אויף פאקטארן, זוכן מיר וועלכע גרעסטע נומער קען צוברענגען סיי צו נומער הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} און סיי צו נומער הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} (מיט אנדערע ווערטער, וואס איז דער געמיינזאמער פאקטאר), וועלן מיר טרעפן אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} איז די לייזונג, ווייל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 * 1} איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} , און הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 * 2} איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} . א צינד צעטיילן מיר דעם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} און דעם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} מיטן געמיינזאמער פאקטאר (וואס דאס איז דער 4), און מיר שרייבן עס אזוי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4(1+2)} אזוי האבן מיר בעצם פאקטאריזירט די ארגינעלע צאל.
פאלינאמען
דאס איז נישט קיין המכלול ארטיקל, בלויז עפעס וואס ליגט דא ביז עס וועט ערזעצט ווערן מיט בעסערס. שרייבט עס איבער!