אונטערשייד צווישן ווערסיעס פון "רוי:פאקטאריזאציע"

פון המכלול
קפיצה לניווט קפיצה לחיפוש
(קרדיט + קטגוריות)
ק (טשעקטי און אנדערע רייניגונג, typos fixed: ײַ ← יי (2), ײ ← יי)
שורה 1: שורה 1:
אין [[מאטעמאטיק]] איז '''פאַקטאָריזאַציע''' ({{שפראך-en|factorization}}) א וועג פון צענעמען א מאטעמאטישע [[צאל]] אויף עלעמענטן, וועלכע הייסן '''פאקטארן''', אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל.
אין [[מאטעמאטיק]] איז '''פאַקטאָריזאַציע''' ({{שפראך-en|factorization}}) א וועג פון צענעמען א מאטעמאטישע [[צאל]] אויף עלעמענטן, וועלכע הייסן '''פאקטארן''', אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל.


צום ביישפיל די נומער 6936 קען מען צעלײגן אזוי: 17<sup>2</sup> · 3 · 2<sup>3</sup> = 6936 &nbsp;
צום ביישפיל די נומער 6936 קען מען צעלייגן אזוי: 17<sup>2</sup> · 3 · 2<sup>3</sup> = 6936 &nbsp;


דאס זעלבע איז אויב מיר האבן א [[פאלינאם]] ''x''<sup>2</sup> - 4, קען מען צענעמען צו די פאקטארן אזוי:  (''x'' - 2)(''x'' + 2) לויט א באשטימטער [[פארמולע]]. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", דײַטש: "die Differenz zweier Quadratzahlen"):
דאס זעלבע איז אויב מיר האבן א [[פאלינאם]] ''x''<sup>2</sup> - 4, קען מען צענעמען צו די פאקטארן אזוי:  (''x'' - 2)(''x'' + 2) לויט א באשטימטער [[פארמולע]]. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", דייטש: "die Differenz zweier Quadratzahlen"):


(a<sup>2</sup> - b<sup>2</sup> = (a + b)(a - b
(a<sup> 2</sup> - b<sup>2</sup> = (a + b)(a - b


אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> + 4x + 4, באניצט מען די אידענטיטעט:
אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> + 4x + 4, באניצט מען די אידענטיטעט:
שורה 13: שורה 13:
דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 2<sup>2</sup> איז 4. דאן מען שרייבט:
דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 2<sup>2</sup> איז 4. דאן מען שרייבט:


<sup>2</sup>(x<sup>2</sup> + 4x + 4 = (x + 2  
<sup>2</sup>(x<sup>2</sup> + 4x + = (x + 2  


אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> - 4x + 4 באניצט מען די אידענטיטעט:  
אז מען פאקטאריזירט דעם פאלינאם x<sup>2</sup> - 4x + 4 באניצט מען די אידענטיטעט:  
שורה 21: שורה 21:
דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 2<sup>2</sup>- איז 4. דאן מען שרייבט:  
דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 2<sup>2</sup>- איז 4. דאן מען שרייבט:  


<sup>2</sup>(x<sup>2</sup> - 4x + 4 = (x - 2   
<sup>2</sup>(x<sup>2</sup> - 4x + = (x - 2   


== גאנצע צאל ==
== גאנצע צאל ==
אויב מיר האָבן, למשל, אַ [[צוזאמענגעזעצטע צאל|צוזאַמענגעזעצטע צאָל]]: <math>\ 4</math>, און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל בלײַבן א [[נאטירלעכע צאל|נאַטירלעכע צאָל]] (אויסער מיט 4 אליין), וואָס דאָס איז <math>\ 2</math> און מיר באקומען די פאַקטאָריזאַציע: <math>\ 2*2</math>.
אויב מיר האָבן, למשל, אַ [[צוזאמענגעזעצטע צאל|צוזאַמענגעזעצטע צאָל]]: <math>\ 4</math>, און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל בלייבן א [[נאטירלעכע צאל|נאַטירלעכע צאָל]] (אויסער מיט 4 אליין), וואָס דאָס איז <math>\ 2</math> און מיר באקומען די פאַקטאָריזאַציע: <math>\ 2*2</math>.


לאמיר נעמען מער א קאמפליצירטע נומער: <math>\ 30</math>. מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז <math>\ 3</math> (ווייל <math>\ 3*10=30</math>). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א [[פרימצאל]] וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף <math>\ 2*5</math>, אזוי ווייסן מיר אז דער גורם צו 30 איז: <math>\ 3*2*5</math>.
לאמיר נעמען מער א קאמפליצירטע נומער: <math>\ 30</math>. מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז <math>\ 3</math> (ווייל <math>\ 3*10=30</math>). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א [[פרימצאל]] וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף <math>\ 2*5</math>, אזוי ווייסן מיר אז דער גורם צו 30 איז: <math>\ 3*2*5</math>.
שורה 34: שורה 34:




[[קאטעגאריע:אלגעברע]]
[[קאַטעגאָריע:אלגעברע]]
[[קאטעגאריע:אומבאקוקט]]
[[קאַטעגאָריע:אומבאקוקט]]
[[קאטעגאריע:אויף יידיש]]  
[[קאַטעגאָריע:אויף יידיש]]  
{{קרד/ויקי/יידיש}}
{{קרד/ויקי/יידיש}}

רעוויזיע פון 22:22, 8 דעצעמבער 2022

אין מאטעמאטיק איז פאַקטאָריזאַציע (ענגליש: factorization) א וועג פון צענעמען א מאטעמאטישע צאל אויף עלעמענטן, וועלכע הייסן פאקטארן, אויף א פאל וואס ווען מען טאפלט די פאקטארן איינס מיט די אנדערע באקומט מען די ארגינעלע צאל.

צום ביישפיל די נומער 6936 קען מען צעלייגן אזוי: 172 · 3 · 23 = 6936  

דאס זעלבע איז אויב מיר האבן א פאלינאם x2 - 4, קען מען צענעמען צו די פאקטארן אזוי: (x - 2)(x + 2) לויט א באשטימטער פארמולע. די אידענטיטעט וואס איז באניצט פאר די דאזיגע פאקטאריזאציע הייסט "דער אונטערשיד פון צוויי קוואדראטצאלן" (ענגליש: "the difference of two square numbers", דייטש: "die Differenz zweier Quadratzahlen"):

(a 2 - b2 = (a + b)(a - b

אז מען פאקטאריזירט דעם פאלינאם x2 + 4x + 4, באניצט מען די אידענטיטעט:

a + b)2 = a2 + 2ab + b2)

דא זענען a און x גלייך. b איז 2 ווייל 2 מאל x מאל 2 איז 4x און 22 איז 4. דאן מען שרייבט:

2(x2 + 4x + 4 = (x + 2

אז מען פאקטאריזירט דעם פאלינאם x2 - 4x + 4 באניצט מען די אידענטיטעט:

a - b)2 = a2 - 2ab + b2)

דא זענען a און x גלייך. b איז 2 ווייל 2- מאל x מאל 2 איז 4x- און 22- איז 4. דאן מען שרייבט:

2(x2 - 4x + 4 = (x - 2 

גאנצע צאל

אויב מיר האָבן, למשל, אַ צוזאַמענגעזעצטע צאָל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} , און מיר ווילן דערגיין אירע פאַקטאָרן, טיילן מיר אפ דעם 4 צו דער גרעסטער נומער וואס מען קען צעטיילן אויף א פאל זאל בלייבן א נאַטירלעכע צאָל (אויסער מיט 4 אליין), וואָס דאָס איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2} און מיר באקומען די פאַקטאָריזאַציע: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2*2} .

לאמיר נעמען מער א קאמפליצירטע נומער: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 30} . מיר זוכן די גרעסטע נומער וואס קען אפטיילן דעם 30, וואס דאס איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3} (ווייל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3*10=30} ). נאכער זוכן מיר וואס איז דער גורם צו די נומערן 3 און 10, וועלן מיר טרעפן אז 3 איז א פרימצאל וואס מע קען נישט צעטיילן, און נאר דעם 10 קען מען צעטיילן אויף הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 2*5} , אזוי ווייסן מיר אז דער גורם צו 30 איז: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 3*2*5} .

פאקטאריזירן דורך ארויסנעמען א געמיינזאמער פאקטאר

אויב מיר האבן א חשבון מיט צוגאב און/אדער אראפנעם, צום ביישפיל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 + 8} און מיר ווילן דאס צעגלידערן אויף פאקטארן, זוכן מיר וועלכע גרעסטע נומער קען צוברענגען סיי צו נומער הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} און סיי צו נומער הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} (מיט אנדערע ווערטער, וואס איז דער געמיינזאמער פאקטאר), וועלן מיר טרעפן אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} איז די לייזונג, ווייל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 * 1} איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} , און הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4 * 2} איז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} . א צינד צעטיילן מיר דעם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4} און דעם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 8} מיטן געמיינזאמער פאקטאר (וואס דאס איז דער 4), און מיר שרייבן עס אזוי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ 4(1+2)} אזוי האבן מיר בעצם פאקטאריזירט די ארגינעלע צאל.

פאלינאמען

דאס איז נישט קיין המכלול ארטיקל, בלויז עפעס וואס ליגט דא ביז עס וועט ערזעצט ווערן מיט בעסערס. שרייבט עס איבער!